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Abstract

Neural networks are vulnerable to small adversarial
perturbations. While existing literature largely focused
on the vulnerability of learned models, we demonstrate
an intriguing phenomenon that adversarial robustness,
unlike clean accuracy, is sensitive to the input data
distribution. Even a semantics-preserving transforma-
tions on the input data distribution can cause a signifi-
cantly different robustness for the adversarially trained
model that is both trained and evaluated on the new dis-
tribution. We show this by constructing semantically-
identical variants for MNIST and CIFAR10 respec-
tively, and show that standardly trained models achieve
similar clean accuracies on them, but adversarially
trained models achieve significantly different robust-
ness accuracies. This counter-intuitive phenomenon
indicates that input data distribution alone can affect
the adversarial robustness of trained neural networks,
not necessarily the tasks themselves. The full paper
(ICLR 2019) can be found at https: // openreview.
net/ forum? id= S1xNEhR9KX .

1. Introduction
We study the relationship between adversarial ro-

bustness and the input data distribution. We focus on
the adversarial training method [1], arguably the most
popular defense method so far due to its simplicity, ef-
fectiveness and scalability. Our main contribution is
the finding that adversarial robustness is highly sensi-
tive to the input data distribution:

A semantically-lossless shift on the data distribution
could result in a drastically different robustness for

adversarially trained models.

Note that this is different from the transferability of
a fixed model that is trained on one data distribution
but tested on another distribution. Even retraining
the model on the new data distribution may give us a
completely different adversarial robustness on the same

new distribution. This is also in sharp contrast to the
clean accuracy of standard training, which, as we show
in later sections, is insensitive to such shifts. To our
best knowledge, our paper is the first work in the lit-
erature that demonstrates such sensitivity.

Such sensitivity raises the question of how to prop-
erly evaluate adversarial robustness. In particular,
the sensitivity of adversarial robustness suggests that
certain datasets may not be sufficiently representa-
tive when benchmarking different robust learning al-
gorithms. It also raises serious concerns about the de-
ployment of believed-to-be-robust training algorithm in
a real product. In a standard development procedure,
various models would be prototyped and measured on
the existing data. However, the sensitivity of adver-
sarial robustness makes the truthfulness of the perfor-
mance estimations questionable, as one would expect
future data to be slightly shifted. We illustrate the
practical implications in Section 3: the robust accu-
racy of PGD trained model is sensitive to gamma values
of gamma-corrected CIFAR10 images. This indicates
that image datasets collected under different lighting
conditions may have different robustness properties.

Finally, our finding opens up a new angle and pro-
vides novel insights to the adversarial vulnerability
problem, complementing several recent works on the
issue of data distributions’ influences on robustness. [4]
hypothesizes that there is an intrinsic tradeoff between
clean accuracy and adversarial robustness. Our studies
complement this result, showing that there are differ-
ent levels of tradeoffs depending on the characteristics
of input data distribution, under the same learning set-
tings (training algorithm, model and training set size).
[2] shows that different data distributions could have
drastically different properties of adversarially robust
generalization, theoretically on Bernoulli vs mixtures
of Gaussians, and empirically on standard benchmark
datasets. From the sensitivity perspective, we demon-
strate that being from completely different distribu-
tions (e.g. binary vs Gaussian or MNIST vs CIFAR10)
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may not be the essential reason for having large robust-
ness difference. Gradual semantics-preserving trans-
formations of data distribution can also cause large
changes to datasets’ achievable robustness.

2. Robustness on Datasets Variants with

Different Input Distributions
In this section we carefully design a series of datasets

and experiments to further study its influence. One im-
portant property of our new datasets is that they have
different input data distributions P(x)’s while keep-
ing the true classification P(y|x) reasonably fixed, thus
these datasets are only different in a “semantic-lossless”
shift. Our experiments reveal an unexpected phe-
nomenon that while standard learning methods man-
age to achieve stable clean accuracies across differ-
ent data distributions under “semantic-lossless” shifts,
however, adversarial training, arguably the most pop-
ular method to achieve robust models, loses this de-
sirable property, in that its robust accuracy becomes
unstable even under a “semantic-lossless” shift on the
data distribution. We emphasize that different from
preprocessing steps or transfer learning, here we treat
the shifted data distribution as a new underlying distri-
bution. We both train the models and test the robust
accuracies on the same new distribution.

2.1. Smoothing and Saturation

In general, MNIST has a more binary distribution of
pixels, while CIFAR10 has a more continuous spectrum
of pixel values. We apply different levels of “smooth-
ing” on MNIST to create more CIFAR-like datasets,
and different levels of “saturation” on CIFAR10 to cre-
ate more “binary” ones, as shown in Figure 1a and 1b.
Note that we would like to maintain the semantic in-
formation of the original data, which means that such
operations should be semantics-lossless.

Smoothing is applied on MNIST images, to make
images “less binary”. Given an image xi, its smoothed
version x̃i

(s) is generated by first applying average fil-
ter of kernel size s to xi to generate an intermediate
smooth image, and then take pixel-wise maximum be-
tween xi and the intermediate smooth image.

Saturation of the image x is denoted by x̂(p),
and the procedure is defined as: x̂(p) = sign(2x −

1) |2x−1|
2

p

2 + 1
2 , where all the operations are pixel-wise

and each element of x̂(p) is guaranteed to be in [0, 1].
Saturation is used to generate variants of the CIFAR10
dataset with less centered pixel values. For different
saturation level p’s, one can see from Figure 1b that
x̂(p) is still semantically similar to x in the same clas-
sification task.

2.2. Experimental Setups

We use the smoothing and saturation to manipulate
the data distributions of MNIST and CIFAR10, and
show empirical results on how data distributions affects
robust accuracies of neural networks trained on them.
To measure the difficulty of the classification task, we
perform standard neural network training and test ac-
curacies on clean data. To measure the difficulty to
achieve robustness, we perform ℓ∞ projected gradient
descent (PGD) based adversarial training [1] and test
robust accuracies on adversarially perturbed data. To
understand whether low robust accuracy is due to low
clean accuracy or vulnerability of model, we also re-
port robustness w.r.t. predictions, where the attack is
used to perturb against the model’s clean prediction,
instead of the true label. We use LeNet5 on all the
MNIST variants, and use wide residual networks [5]
with widen factor 4 and depth 28 for all the CIFAR10
variants. Unless otherwise specified, PGD training on
MNIST variants and CIFAR10 variants all follows the
settings in [1]. PGD attacks on MNIST variants run
with ǫ = 0.3, step size of 0.01 and 40 iterations, and
runs with ǫ = 8/255, step size of 2/255 and 10 itera-
tions on CIFAR10 variants , same as in [1].

2.3. Sensitivity of Robust Accuracy to Data Trans-
formations

Results on MNIST variants are presented in Fig-
ure 1d. The clean accuracy of standard training is
very stable across different MNIST variants. This in-
dicates that their classification tasks have similar dif-
ficulties, if the training has no robust considerations.
When performing PGD adversarial training, clean ac-
curacy drops only slightly. However, both robust ac-
curacy and robustness w.r.t. predictions drop signif-
icantly. This indicates that as smooth level goes up,
it is significantly harder to achieve robustness. Note
that for binarized MNIST with adversarial training,
the clean accuracy and the robust accuracy are almost
the same. Indicating that getting high robust accuracy
on binarized MNIST does not conflict with achieving
high clean accuracy.

CIFAR10 result tell a similar story, as reported in
Figure 1e. For standard training, the clean accuracy
maintains almost at the original level until saturation
level 16, despite that it is already perceptually very
saturated. In contrast, PGD training has a different
trend. Before level 16, the robust accuracy significantly
increases from 43.2% until 79.7%, while the clean test
accuracy drops only in a comparatively small range,
from 85.4% to 80.0%. After level 16, PGD training
has almost the same clean accuracy and robust accu-
racy. However, robustness w.r.t. predictions still keeps
increasing, which again indicates the instability of the
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(a) MNIST variants, from left to right:
binarized, original, smoothed with ker-
nel size 2, 3, 4, 5

(b) CIFAR10 variants, from left to
right, original, saturation level 4, 8, 16,
64, ∞

(c) Gamma mapped images from left
to right 0.6, 0.8, 1.0 (original image),
1.2 , 1.4

(d) MNIST results under different
smooth levels

(e) CIFAR10 results under different
saturation levels

(f) Robustness results on gamma
mapped CIFAR10 variant

Figure 1: Variants of MNIST and CIFAR10 datasets (a, b, c), and Accuracy, Robust Accuracy and Robustness
w.r.t. Predictions on different data variants (c, d, e).

robustness. On the other hand, if the saturation level
is smaller than 2, we get worse robust accuracy after
PGD training, e.g. at saturation level 1 the robust ac-
curacy is 33.0%. Simultaneously, the clean accuracy
maintains almost the same.

Note that after saturation level 64 the standard
training accuracies starts to drop significantly. This is
likely due to that high degree of saturation has caused
“information loss”. Models trained on highly saturated
CIFAR10 are quite robust and the gap between robust
accuracy and robustness w.r.t. predictions is due to
lower clean accuracy. In contrast, In MNIST variants,
the robustness w.r.t. predictions is always almost the
same as robust accuracy, indicating that drops in ro-
bust accuracy is due to adversarial vulnerability.

From these results, we can conclude that robust ac-
curacy under PGD training is much more sensitive than
clean accuracy under standard training to the differ-
ences in input data distribution. More importantly, a
semantically-lossless shift on the data transformation,
while not introducing any unexpected risk for the clean
accuracy of standard training, can lead to large vari-
ations in robust accuracy. Such previously unnoticed
sensitivity raised serious concerns in practice, as dis-
cussed in the next section.

3. Sensitivity to Image Acquisition Con-

dition and Preprocessing
The natural images are acquired under different

lighting conditions, with different cameras and differ-
ent camera settings. They are usually preprocessed in
different ways. All these factors could lead to mild
shifts on the input distribution. Therefore, we might
get very different performance measures when perform-
ing adversarial training on images taken under different
conditions. In this section, we demonstrate this phe-

nomenon on variants of CIFAR10 images under differ-
ent gamma mappings. These variants are then used to
represent image dataset acquired under different con-
ditions. Gamma mapping is a simple element-wise op-
eration that takes the original image x, and output the
gamma mapped image x̃(γ) by performing x̃(γ) = xγ .
Gamma mapping is commonly used to adjust the expo-
sure of an images. We refer the readers to [3] on more
details about gamma mappings. Figure 1c shows vari-
ants of the same image processed with different gamma
values. Lower gamma value leads to brighter images
and higher gamma values gives darker images, since
pixel values range from 0 to 1. Despite the changes in
brightness, the semantic information is preserved.

We perform the same experiments as in the satu-
rated CIFAR10 variants experiment in Section 2, with
results displayed in Figure 1f. Clean accuracies almost
remain the same across different gamma values. How-
ever, under PGD training, both accuracy and robust
accuracy varies largely under different gamma values.

These results should raise practitioners’ attention
on how to interpret robustness benchmark “values”.
For the same adversarial training setting, the robust-
ness measure might change drastically between image
datasets with different “exposures”. In other words, if
a training algorithm achieves good robustness on one
image dataset, it doesn’t necessarily achieve similar ro-
bustness on another semantically-identical but slightly
varied datasets. Therefore, the actual robustness could
be underestimated or overestimated significantly. This
raises the questions on whether we are evaluating im-
age classifier robustness in a reliable way, and how we
choose benchmark settings that can match the real ro-
bustness requirements in practice. We defer this im-
portant open question to future research.
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